

MINIMAL SURFACES

IN HYPERBOLIC GEOMETRY

Winter School Côte d'Azur

Lecture III, 7th January 2026

Goal: sketch a proof of the following

Theorem (Huang - Wang '15, '19)

For every $g \geq 2$ and $n \geq 1$, there exists a quasi-Fuchsian manifold (M, h) , $M \cong S_g \times \mathbb{R}$, containing at least n closed minimal surfaces homeomorphic to $S_g \times \{*\}$.

Ideas here based on Huang - Wang '19, Anderson, Farre - Vargas Pallete.

A **mapping torus** is a 3-manifold of the form

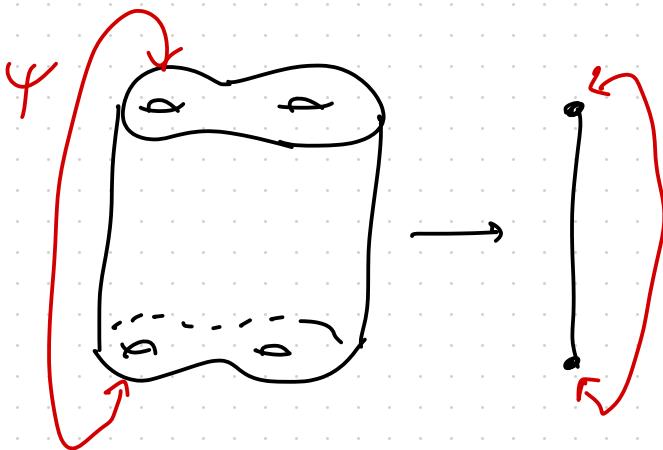
$$N_\varphi = S_g \times [0, 1] / \sim$$

where $(p, 0) \sim (\varphi(p), 1)$ for $\varphi: S_g \rightarrow S_g$
orientation-preserving diffeo.

The map $[(p, t)] \rightarrow t$

induces a fibration

$$N_\varphi \rightarrow S^1 = [0, 1] / \sim$$



Theorem Given $\psi: S_g \rightarrow S_g$ differ

- ψ has finite order $\Leftrightarrow N_\psi$ has geometry $H^2 \times \mathbb{R}$
- ψ is reducible $\Leftrightarrow N_\psi$ has an essential torus
- ψ is pseudo-Anosov $\Leftrightarrow N_\psi$ is hyperbolic.

↑
Nielsen - Thurston
classification of
surface diffeomorphisms
(up to $\text{Diff}_0(S_g)$)

↑
geometrization

So, if \mathcal{M} is pseudo-Anosov, then $N_{\mathcal{M}}$ is a closed hyperbolic manifold.

Theorem (Virtually Fibered Conjecture,
Wise + Agol 2009 - 2012)

Every closed hyperbolic 3-manifold has a finite cover that is a pseudo-Anosov mapping torus.

Now, let $\psi: S_g \rightarrow S_g$ pseudo-Anosov.

We have

$$1 \longrightarrow \pi_1 S_g \xrightarrow{i} \pi_1 N_\psi \longrightarrow \pi_1 S^1 \cong \mathbb{Z} \longrightarrow 1$$

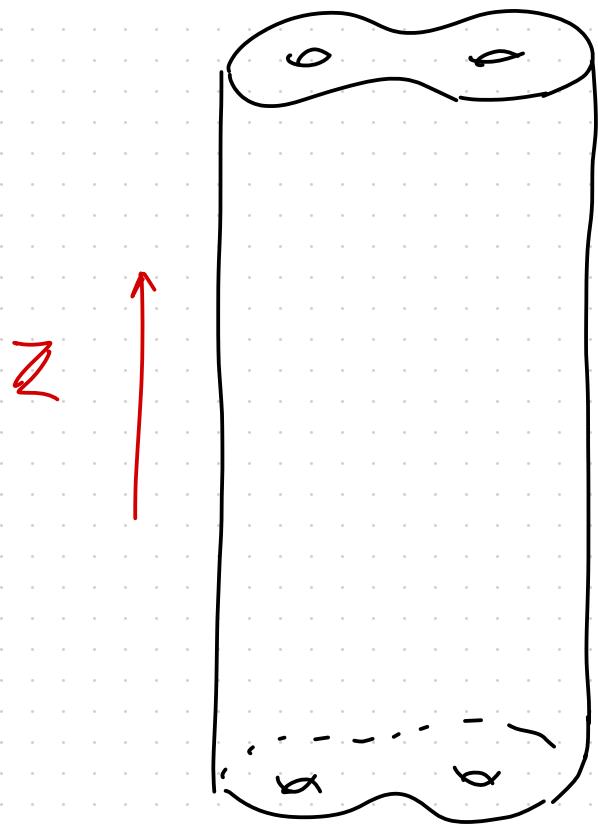
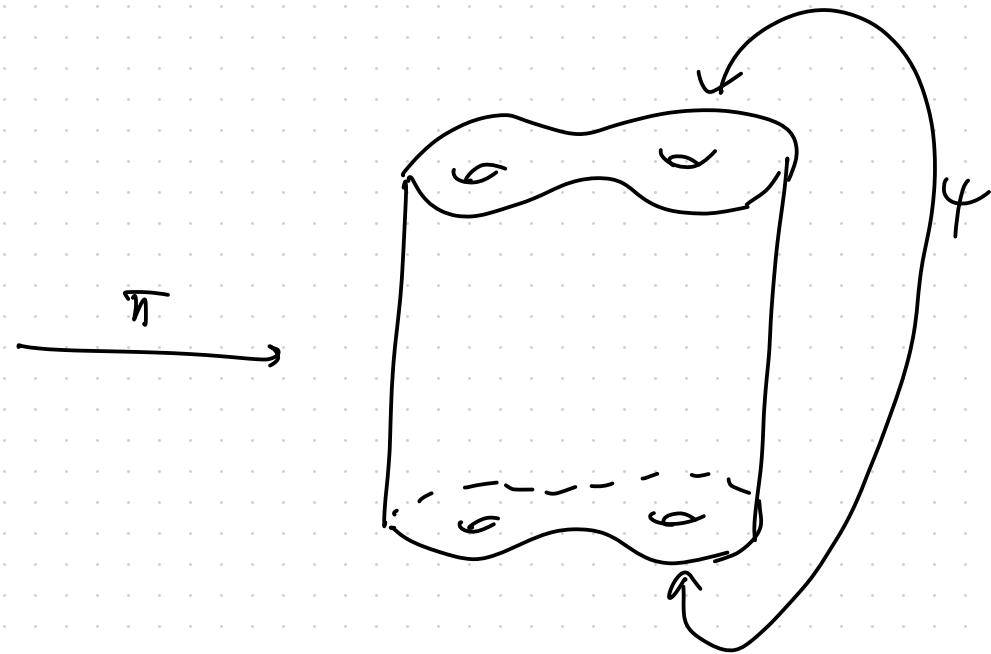
$$\Gamma = i_*(\pi_1 S_g)$$

Let $M_\psi = \hat{N}_\psi \xrightarrow{\pi} N_\psi$ the covering of N_ψ

such that $\pi_*(\pi_1 M) = \Gamma$

Then $[(M_\psi, h_\psi)] \xrightarrow{\pi^{*h}} \text{AH}(S_g)$

Actually, it is in $\text{DAH}(S_g)$

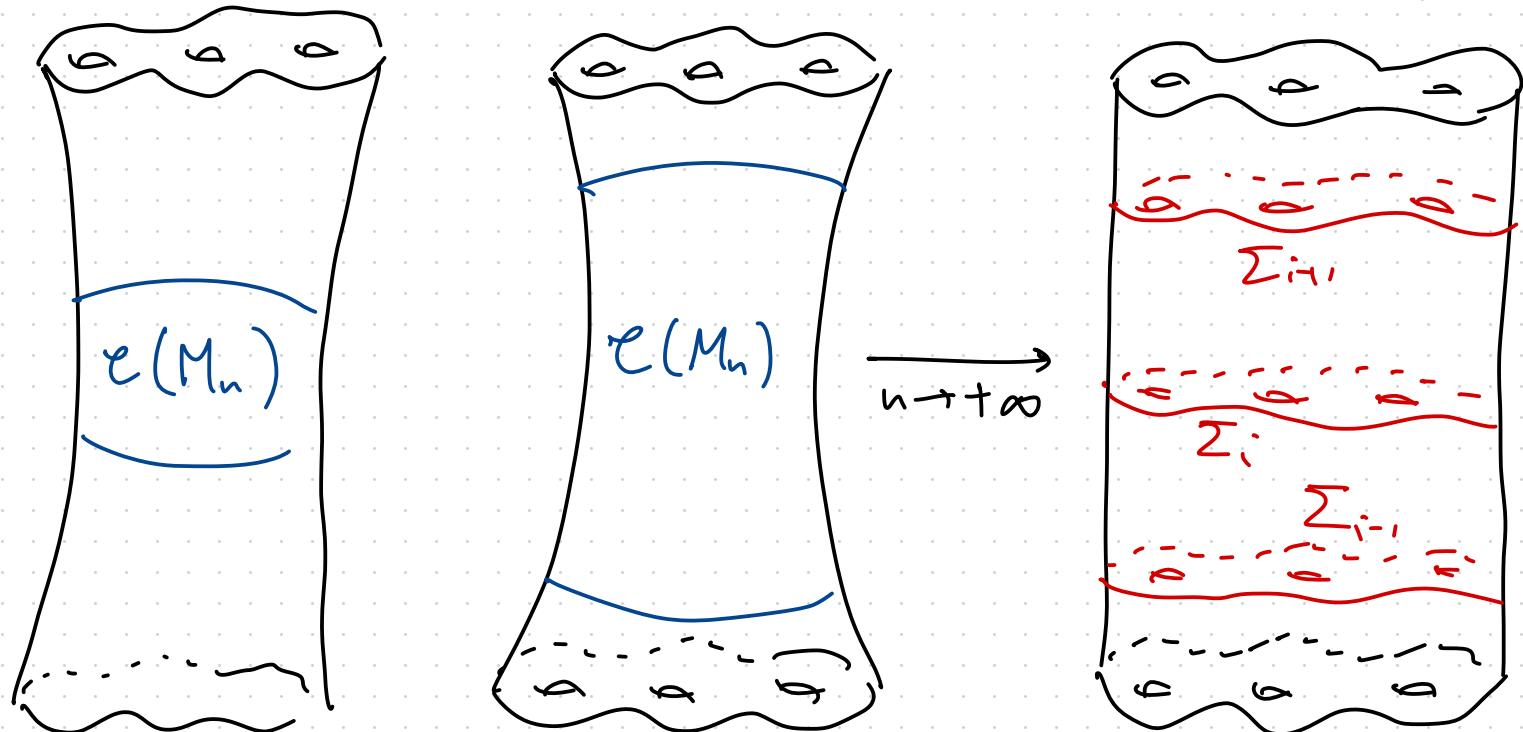


$$\epsilon(M_4) = M_4 \Rightarrow M_4 \text{ net quasifuchsian.}$$

By general results (Schoen-Yau, Sachs-Uhlenbeck),
 N_g contains an area minimizing minimal
surface homotopic to $S_g \xrightarrow[\text{fiber}]{} N_g$

$\rightsquigarrow M_g$ has infinitely many closed minimal
surfaces Σ_i of genus g that minimize area
in a neighbourhood of Σ_i ($i \in \mathbb{Z}$) .

Now, let (M_n, h_n) a sequence of quasi-Fuchsian manifolds converging to (M_∞, h_∞) in $AH(S_g)$.



Rough idea: each minimal surface Σ_i should be a limit of minimal surfaces in M_n

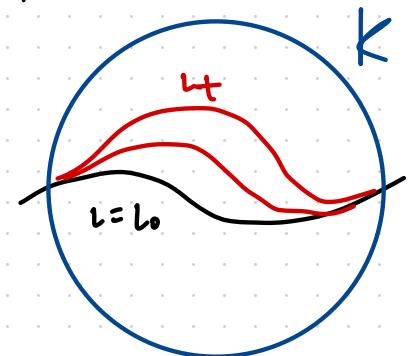
$\curvearrowleft M_n$ has an arbitrarily large number of minimal surfaces for n big.

This works well if Σ are strictly stable

First variation formula:

if $\nu_t(p) = \exp_{\nu(p)}(t f(p) N(p))$, $f \in C^1_c(S)$, then

$$\frac{d}{dt} \Big|_{t=0} \text{Area}(\nu_t(S)) = - \int_S f H \, dA_S$$



so, ν is critical point of area $\Leftrightarrow H \equiv 0$.

Second variation formula

$$\left. \frac{d^2}{dt^2} \right|_{t=0} \text{Area}(\iota_t(S)) = \int_S \left(\|\nabla f\|^2 - (\|\mathbb{II}_\Sigma\|^2 - 2)f \right) dA_\Sigma$$

$$= - \int_S f L_\Sigma(f) dA_\Sigma$$

\uparrow
 ≥ 0 if
 Σ WAF

$$\text{for } L_\Sigma(f) = -\Delta_\Sigma f - (\|\mathbb{II}_\Sigma\|^2 - 2)f$$

Morally, L_Σ is the derivative of the mean curvature

\Rightarrow if L_Σ is invertible, then one can use the implicit function theorem.

Problem: for an area-minimizing surface,

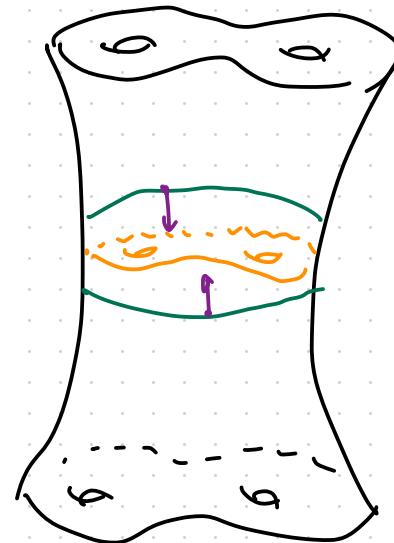
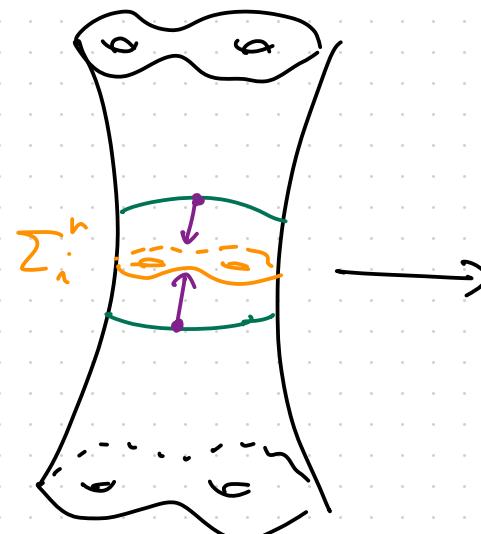
$$\frac{d}{dt^2} \Big|_{t=0} \text{Area} \geq 0 \Rightarrow \int_{\Sigma} f L_{\Sigma}(f) dA_{\Sigma} \geq 0$$

but $L_{\Sigma}(f)$ might have kernel

("stable" but not "strictly stable")

Solution: Σ_i has a neighbourhood foliated by surfaces where the sign of the mean curvature is constant on each side ($H > 0$, $H < 0$ or $H = 0$)

- if $H > 0$, one can find minimal surfaces in the sequence M_n for n large!



- $H < 0$ not possible if Σ_i is area-minimizing
- $H = 0$?

Conjecture No hyperbolic three-manifold has
a (local) foliation by closed minimal surfaces

Anderson + Huang-Huang : there exist some
hyperbolic mapping tori N_ψ that has no
local foliation by closed minimal surfaces !